«Проверено»

Заместитель директора по УВР ГБОУ гимназии им. С.В.Байменова города Похвистнево Е. Ю. Павлова/ «30» августа 2023 г.

«Утверждено» И.о. директора ГБОУ гимназии им. С.В.Байменова города Похвистнево А.А. Бочарова Приказ № 287-од от «31» августа 2023 г.

РАБОЧАЯ ПРОГРАММА

элективного курса в 10б классе

«Отдельные вопросы теории многочленов»

(1 час в неделю, всего 34 часа) педагога Панфиловой Веры Анатольевны,

учителя математики высшей категории

Рассмотрена на заседании методического объединения учителей математики и информатики протокол № 1 от 29 августа 2023 г. Руководитель МО /Т.Ю. Волоскова/

Пояснительная записка

Рабочая программа разработана на основе программы элективного курса по математике Рузановой И.М., рассчитана для учащихся 10 класса на 34 часа в год, и предлагает изучение таких вопросов, которые не входят в школьный курс математики, но закладывают основы для дальнейшего (вузовского) его изучения. Включенный в программу материал может применяться для разных групп школьников за счет обобщенности знаниевого компонента и его преемственности с базовым уровнем, практической направленности.

знакомит c многочленами, уровень многочленами (сложением, вычитанием И умножением), многочлена на множители, с формулами сокращенного умножения. Решаются уравнения; учащиеся знакомятся формулами \mathbf{c} выражающими зависимость между корнями квадратного уравнения и его коэффициентами. Рассматривается метод решения рациональных уравнений четвертой степени путем введения вспомогательной переменной.

Цель занятий данного курса - расширить знания школьников о многочленах, сформировать представление о методах и способах решения нестандартных задач и алгебраических уравнений на уровне, превышающем уровень государственных образовательных стандартов. Знакомство с теорией многочленов позволит учащимся решать определенные олимпиадные и конкурсные задачи.

Предложенный материал обеспечивает преемственность между числами и многочленами, является доступным, интересным, воспитывает математическую культуру учащихся и вполне уместен для развития устойчивого интереса к математике, мыслительных и творческих способностей. Теория многочленов богата идеями, содержит много практически применяемых приёмов. Ее методы интересны, не трудоемки для изложения и приводят к глубоким результатам, многочисленные приложения. Важность теории многочленов состоит еще в том, что с помощью многочленов можно получить хорошие приближения различных функций, ЧТО позволяет применять многочленов во многих вычислительных методах И в компьютерной математике. Изучение теории многочленов поможет ученику с единых позиций взглянуть на многие задачи математики, успешно решать сложные уравнения и неравенства, почувствовать связь между чистой и прикладной математикой. В предлагаемом курсе каждое положение теории многочленов сопровождается большим количеством примеров и исследовательских задач.

Соответствующий подбор материала преследует следующие цели: с одной стороны - это создание базы для развития способностей учащихся, расширения кругозора, с другой - восполнение некоторых содержательных пробелов основного курса, а также включение учащегося в поисковую деятельность, как фактор личностного развития; развитие коммуникативных навыков в процессе практической деятельности.

Для достижения поставленных целей в процессе обучения решаются следующие задачи:

- 1. Приобщение учащихся к работе с математической и справочной литературой.
- 2. Выделение логических приёмов мышления, их осмысление и овладение ими.
 - 3. Обеспечение диалогичности процесса обучения математике.
 - 4. Формирование потребности к целенаправленному самообразованию.

Вид курса: расширяющий и углубляющий базовый курс.

С целью определения динамики интереса предлагается:

- Собеседования в процессе работы.
- Анкетирование на последнем занятии по теме.

С целью определения динамики умений предлагается:

- Отслеживание умений по каждой теме.
- Построение диаграммы умений по темам и общей диаграммы успешности учебной деятельности.

По окончанию изучения курса учащиеся должны уметь:

- Выполнять действия над многочленами.
- Применять теорию многочленов к нахождению корней уравнений высших степеней. Уметь применять теорему Безу.
- Использовать обобщенную теорему Виета для решения уравнений с параметрами.
- Решать уравнения методом неопределенных коэффициентов.
- Использовать замену переменных в определенных типах уравнений.
- Применять алгоритмы решения симметричных и возвратных уравнений.

Изучение курса предполагается построить в виде лекций, семинаров, уроков-сообщений, консультаций. На всех типах занятий следует вести активный диалог с учащимися.

Итоговое занятие предусматривает защиту и презентацию собственного проекта или реферата (доклада).

Календарно-тематическое планирование

№ урока п/п	Тема	Кол-во часов	Дата	Тип занятия
1-3	Понятие многочлена. Действия над многочленами.	3	1-3 недели	Беседа. Практикум.
4-6	Дополнительные формулы сокращенного умножения.	3	4-6 недели	Лекция. Практикум.
7-9	Деление многочленов с остатком. Теорема Безу.	3	7-9 недели	Лекция. Практикум.
10-11	Зачетная работа № 1.	2	10-11 недели	Контроль.
12-14	Обобщенная теорема Виета.	3	12-14 недели	Сообщения учащихся. Практикум.
15-17	Симметрические многочлены.	3	15-17 недели	Сообщения учащихся. Практикум.
18-20	Возвратные уравнения.	3	18-20 недели	Сообщения учащихся. Практикум.
21-22	Зачетная работа № 2.	2	21-22 недели	Контроль.
23-26	Замена переменных в определенных типах уравнений.	4	23-26 недели	Практикум.
27-30	Уравнения с параметрами.	4	27-30 недели	Практикум.
31-32	Зачетная работа № 3.	2	31-32 недели	Контроль.
33-34	Итоговое анкетирование. Заслушивание докладов и рефератов учащихся.	2	33-34 недели	Семинар.

Содержание программы

1. Понятие многочлена. Действия над многочленами.

Стандартный вид многочлена. Свойства степеней и коэффициентов многочлена. Равенство многочленов. Действия над многочленами. Разложение многочленов на множители методом группировки и с помощью вынесения общего множителя за скобки.

2. Дополнительные формулы сокращенного умножения.

$$(a + b) (a - b) = a^2 - b^2, (a \pm b)^2 = a^2 \pm 2ab + b^2, a^3 \pm b^3 = (a \pm b)(a^2 - ab + b^2),$$

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + \dots + a^{n-k}b^{k-1} + \dots + ab^{n-2} + b^{n-1}),$$

$$a^{2m+1} + b^{2m+1} = (a + b)(a^{2m} - a^{2m-1}b + \dots + (-1)^{k}a^{2m-k}b^{k} + \dots + b^{2m}),$$

$$(a + b + c)^{2} = a^{2} + c^{2} + b^{2} + 2ab + 2ac + 2bc,$$

$$(a_{1} + a_{2} + \dots + a_{n})^{2} = a_{1}^{2} + a_{2}^{2} + a_{3}^{2} + \dots + 2a_{1}a_{2} + 2a_{1}a_{3} + \dots + 2a_{n-1}a_{n}.$$

3. Деление многочленов с остатком. Теорема Безу.

Деление многочлена на многочлен с остатком. Теорема Безу. Корни многочлена. Схема Горнера.

4. Обобщенная теорема Виета.

Обобщение теоремы Виета для многочленов степени n > 2.

5. Симметрические многочлены.

Симметрические многочлены и их применение. Метод неопределенных коэффициентов. Решение симметрических уравнений.

6. Возвратные уравнения.

Решение возвратных уравнений четной и нечетной степени.

7. Замена переменных в определенных типах уравнений.

a)
$$(x + \alpha)^4 + (x + \beta)^4 = c$$
. Замена: $t = \frac{(x + \alpha) + (x + \beta)}{2}$.

6)
$$(x-\alpha)(x-\beta)(x-\gamma)(x-\delta) = A$$
, $z \partial e \alpha < \beta < \gamma < \delta$, $\beta - \alpha = \delta - \gamma$.

Замена: $t = \frac{4x - \alpha - \beta - \gamma - \delta}{4}$ сводит уравнение к биквадратному.

в)
$$(ax^2 + b_1x + c)(ax^2 + b_2x + c) = Ax^2$$
, $c \ne 0$, $A \ne 0$. Деление на $x^2 \ne 0$ и замена $t = ax + \frac{c}{x}$ сводит уравнение к квадратному.

8. Уравнения с параметрами.

Контрольно-измерительные материалы

Входной тест

A1. Представьте в виде многочлена:
$$(2x^2 + 3x - 2)(4x + 2)$$
.

1)
$$8x^3 + 16x^2 + 2x - 4$$
; 2) $8x^3 + 16x^2 - 2x - 4$;

3)
$$8x^3 + 16x^2 - 14x + 4$$
; 4) $8x^3 + 8x^2 - 2x - 4$

A2. Разложите на множители:
$$abx^2 + bxy - axy - y^2$$
.

1)
$$(ax + y) (bx - y)$$
; 2) $(ax - y) (bx + y)$; 3) $(ax + y) (bx + y)$; 4) $(ax - y) (bx - y)$

A3. Решите уравнение: $2x^2 - 9x + 10 = 0$.

$$2) -2$$
 и $-2,5$;

$$4)$$
 2 и $-2,5$

А4. Не решая уравнения, найдите сумму и произведение его корней: $x^2 - 9x + 20 = 0$.

А5. Разложите на множители квадратный трехчлен: $3x^2 - 2x - 8$.

1)
$$(x + 2) (3x + 4)$$
; 2) $(x - 2) (3x - 4)$; 3) $(x + 2) (3x - 4)$; 4) $(x - 2) (3x + 4)$

B1. Решите уравнение: $2x^3 + 3x^2 + 2x + 3 = 0$.

В2. Один из корней уравнения $x^2 - ax - 12 = 0$ равен 2. Найдите коэффициент a.

В3. Найдите сумму натуральных значений n, при которых выражение $\frac{2n+12}{2n}$ принимает целые значения.

С1. Сравните меньший корень уравнения $x^2 - 3(\sqrt{14} + \sqrt{5})x + 2(\sqrt{14} + \sqrt{5})^2 = 0$ с

числом
$$\frac{\sqrt{3}}{\sqrt{5+2\sqrt{6}}} - \frac{\sqrt{15-6\sqrt{6}}}{2\sqrt{6}-5}$$
.

C2. Решите уравнение: $abx^2 + (a^2 - b^2)x + (a - b)^2 = 0$.

Ответы

A1	A2	A3	A4	A5	B1	B2	B3	C1	C2
2	1	3	3	4	-1,5	-4	12	Меньший	b-a $b-a$
								корень $\sqrt{14} + \sqrt{5} < 6$	a , b

Зачетная работа № 1

А1. Укажите номера неверных утверждений:

- 1) $(4719^3 2734^3) = 1985$;
- 2) $(731^5 611^5) : 120;$
- 3) число $2^{55} + 1$ составное, т. к. делится на 33;
- 4) 313 · 299 313² составное, т. к. делится на 7.

А2. Дан многочлен $P(x) = 2x^4 - 3x^3 + 7x^2 - 10x - 16$. Найдите: P(-1), P(1), P(0), P(2).

А3. Найдите частное (ответ проверьте умножением):

- 1) $(x^2 + 3x 4) : (x + 4);$
- 2) $(4x^3 5x^2 + 6x + 9) : (4x + 3)$.

А4. Найдите числа a и b из тождественного равенства:

$$x^4 + 2x^3 - 16x^2 - 2x + 15 = (x + 1)(x^3 + ax^2 - 17x + b).$$

А5. Укажите наименьший общий знаменатель данных алгебраических дробей:

$$\frac{1}{1-4x+3x^2}; \quad \frac{1}{x^2-5x^3+4x^4}; \quad \frac{1}{12x^2-7x+1}$$

А6. Сократите дробь: $\frac{x^4 - 2x^3 + 2x^2 - 1}{x^4 - 2x^3 + 2x^2 - 2x + 1}.$

В1. Не проводя деления многочленов, найдите остаток от деления многочлена

6

 $P(x) = x^{50} + x^{25} + 4$ на многочлен $Q(x) = x^2 - 1$.

B2. При каких натуральных значениях n выражение $\frac{2n^2 - 11n + 13}{n - 3}$ является целым числом?

- **В3.** Разложите многочлен $P(x) = x^4 5x^3 3x^2 + 9$ по степеням разности x 3.
- **В4**. Найдите целые корни уравнения $(6 x)(x 2)(x + 3)(x + 9) = 24x^2$.
- **C1**. Остаток от деления многочлена P(x) на x- 2 равен 6, а остаток от деления его на x + 3 равен 1. Найдите остаток от деления этого многочлена на (x 2)(x + 3).
- **C2**. Разложите на множители многочлен $x^4 + 3x^3 13x^2 9x + 30$, если известно, что
- 2 и -5 корни этого многочлена.
- **С3**. Выясните, делится ли нацело многочлен $P(x) = x^{100} + 3x^{79} + x^{48} x^{27}$ на x+1.

Зачетная работа № 2

Вариант 1

- **А1.** Известно, что уравнение $2x^4 + 3x^3 4x^2 3x + 2 = 0$ имеет пять действительных корней. Не находя этих корней, найдите сумму их квадратов.
 - 1) 6.5; 2) 6.5; 3) 6.25; 4) 6.25
- **А2.** Известно, что уравнение x^4 $7x^3$ + $13x^2$ + 3x 18 = 0 имеет четыре действительных корня. Не находя этих корней найдите сумму их кубов.
 - 1) 63; 2) 63; 3) 61; 4) 61
- **B1**. Решите уравнение методом неопределенных коэффициентов: $x^4 + 12x^3 + 32x^2 8x 4 = 0$.
- **B2.** Решите возвратное уравнение: $2x^4 5x^3 x^2 + 5x + 2 = 0$.
- **В3.** Решите симметрическое уравнение: $x^4 5x^3 + 8x^2 5x + 1 = 0$.
- **C1.** Решите уравнение: $x^7 + 2x^6 5x^5 13x^4 13x^3 5x^2 + 2x + 1 = 0$.

Ответы

A	1	A2	B 1	B2	В3	C1
			,	2, -0,5, $\frac{1\pm\sqrt{5}}{2}$	1 (четная	-1;_
	4	3	$-4 \pm \sqrt{14}, -2 \pm \sqrt{6}$	$\frac{2}{2}$, $\frac{-0.5}{2}$	кратность)	$3\pm\sqrt{5}$.
					$3\pm\sqrt{5}$	$\frac{}{2}$,
						$-3\pm\sqrt{5}$
						2

Зачетная работа № 3 Вариант 1

A1. Решите уравнение: $(x^2 + x + 2)(x^2 + x + 3) = 6$.

1) 0 и 1; 2) 0 и
$$-1$$
; 3) 2 и -3 ; 4) -3 и 2

A2. Решите уравнение: $4x^4 - 5x^2 + 1 = 0$.

1)
$$1 \text{ и } 0.5; 2) \pm 1 \text{ и } 0.5; 3) 1 \text{ и } \frac{1}{4}; 4) \pm 1 \text{ и } \pm 0.5$$

A3. Решите уравнение: $(x + 1)^4 + (x + 5)^4 = 82$.

$$1) -2$$
 и $0; 2) 2$ и $0; 3) -2; 4) 2$ и -3

A4. Решите уравнение: (x + 1)(x + 2)(x + 4)(x + 5) = 10.

1)
$$-6$$
 и 6; 2) -3 и 3; 3) $-3 + \sqrt{6}$; 4) $-3 \pm \sqrt{6}$

В1. Определите, при каких значениях *a* уравнение $(a^2 + 4a - 21)x^2 - (a^2 - 3a)x - 3 + 4a - a^2 = 0$ имеет более двух корней?

B2. При каком наименьшем значении a уравнение $x^3 + 3x^2 - 45x + a = 0$ имеет ровно один корень?

B3. Решите уравнение: $3(x^2 + 2x - 1)^2 - 2(x^2 + 3x - 1) = -5x^2$.

C1. Укажите значение параметра a, при котором уравнение $x^4 + (1 - 2a)x^2 + a^2 - 4 = 0$ имеет три различных корня.

Ответы

A1	A2	A3	A4	B 1	B2	В3	C 1
2	4	1	4	3	82	$1\pm\sqrt{5}$ $-1\pm\sqrt{5}$	2
						${2}$; ${2}$	

Темы докладов и рефератов для учащихся

- 1. Возвратные уравнения. Решение возвратных уравнений четной и нечетной степени.
- 2. Вывод формулы Кардано.
- 3. Интерполяционный многочлен Лагранжа.
- 4. История открытия формулы Кардано.
- 5. Метод Феррари для решений уравнений четвертой степени.
- 6. Наибольший общий делитель многочленов. Алгоритм Евклида.
- 7. Неприводимый случай формулы Кардано.
- 8. Основная теорема алгебры многочленов.
- 9. Симметрические многочлены. Метод неопределенных коэффициентов. Решение симметрических уравнений.
- 10. Теорема Безу. Корни многочлена.
- 11. Теоремы о границах корней многочленов.
- 12. Теоремы о числе действительных корней многочлена (Штурма, Бюдана-Фурье, Декарта).
- 13. Франсуа Виет, его жизнь и творчество (развитие теории уравнений).

Литература

- 1. Виленкин, Н. Я. Алгебра и математический анализ для 10 класса: Учебное пособие для учащихся школ и классов с углубленным изучением математики /Н. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд. Москва: Просвещение, 1996. 335 с.
- 2. Виленкин, Н. Я. Алгебра и математический анализ для 11 класса: Учеб. пособие для учащихся школ и классов с углубленным изучением математики /Н. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд. Москва: Просвещение, 1996. 288 с.
- 3. Галицкий, М. Л. Сборник задач по алгебре для 8-9 классов: Учебное пособие для учащихся школ и классов с углубленным изучением математики / М. Л. Галицкий, А. М. Гольдман, Л. И. Звавич. Москва: Просвещение, 1997. 271 с.
- 4. Болдырева, М. Х. Факультативный курс по математике, 8 класс. Материалы для учащихся и учителей математики / М. Х. Болдырева, Ю. П. Карпухин, Г. А. Клековкин, Л. М. Рудман. Самара: СИПКРО, 1997. 142 с.
- 5. Лысенко, Ф. Ф. Математика ЕГЭ 2007. Вступительные экзамены. Пособие для самостоятельной подготовки / Ф. Ф. Лысенко, В. Ю. Калашников, А. Б. Неймарк, О. Е. Кудрявцев, Д. А. Мальцев. Ростов на Дону: Легион, 2006. 416 с.
- 6. Максютин, А. А. Математика 10. Учебное пособие для 10-х математических классов, лицеев и гимназий / А. А. Максютин. Самара, 2002. 588 с.
- 7. Максютин, А. А. Дидактические материалы для подготовки к Единому государственному экзамену по математике: В помощь выпускнику и абитуриенту / А. А. Максютин. Самара: Корпорация «Федоров», Изд. «Учебная литература», 2002. 64 с.
- 8. Шарыгин, И. Ф. Факультативный курс по математике: Решение задач: Учебное пособие для 10 класса средней школы /И. Ф. Шарыгин. Москва: Просвещение, 1989.-252 с.
- 9. Шарыгин И. Ф. Математика для школьников старших классов /И. Ф. Шарыгин. Москва: Дрофа, 1995. 491 с.

Матричное представление многоуровневой системы задач.

		Вынесение общего	Формулы сокращенного	Выделение
		множителя	умножения	полного
	33	Родиомито но	Daywara waanyayya ni waxayyay	КВАДРАТА
	33	Разложите на множители:	Решите уравнение выделением полного квадрата:	Решите
		a) $a^3 - ab - a^2b + a^2$;	a) $2x^2 - 9x + 10 = 0$;	уравнение выделение
		6) $ab^2 - b^2y - ax + xy$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	м полного
		$+b^2-x.$		квадрата:
				(a) $2x^2 - 9x$
				+10 = 0;
				6) $x^2 + 4x + 1$
				3 = 0.
HP				
Be	M	Сократите дробь:	1. Решите уравнение:	Разложите
/po	3	a) $\frac{2a^2-2b^2-a+b}{1-2a-2b}$;	$(x+1)^2 - 6(x+1) + 9 = 0.$	на
IĬ.		1 20 20	2. Вычислите:	множители
HP		$6) \frac{2x^2 + 5xy - 3y^2}{2x^2 - xy}$	$a)3,7^3 + 3 \cdot 3,7^2 \cdot 1,3 + 3 \cdot 3,7 \cdot$	$P_4(x) = x^4 - $
ы			$1,3^2+1,3^3;$	$\begin{vmatrix} P_4(x) = x^4 - 1 \\ 6x^2 - 10. \end{vmatrix}$
ат			$6)15,8^3 - 3 \cdot 15,8^2 \cdot 11,8 + 3$	$0 \lambda - 10.$
30B	H3	Решите уравнение:	15,8 · 11,8 ² – 11,8 ³ . Выполните действия:	Решите
pa	113	$6-7x+x^2=4(x-1)\sqrt{x}$.	$a^6 - b^6$ $a^4 + a^2b^2 + b^4$	уравнение:
Общеобразовательный уровень		$0 - 7x + x = 4(x - 1)\sqrt{x}.$	a) $\frac{a^6 - b^6}{a^6 + b^6} : \frac{a^4 + a^2b^2 + b^4}{(a^2 + b^2)^2};$	$x^4 + x^2 + 1$
119 (б)	$+2x^3+2x^2+$
			$\frac{216a^{12} + 343b^9}{0.027x^6 - 0.512y^{21}} : \frac{6a^4 + 7b^3}{0.09x^4 + 0.24x^2y^7 + 0.64y^{14}}$	2x = 1.
			$\begin{bmatrix} 0.027x^{6} - 0.512y^{21} & 0.09x^{4} + 0.24x^{2}y' + 0.64y^{14} \\ \end{bmatrix}$	
			•	Докажите,
				ЧТО
				(x+a)(x+a)
				$\begin{vmatrix} 2a)(x+3a)(x+4a) \end{vmatrix}$
				$+a^4$ ects
				полный
				квадрат.
Į,	33	1. Решите уравнение:	1. Разложите на множители:	Докажите,
		$(a-x)^3 + (b-x)^3 - (a+b)$	a) $x(x^3 - a^3) + ax(x^2 - a^2) + a^3(x^2 - a^3)$	что
леі		$-2x)^3=0.$	(-a);	многочлен
ly6		2. Сократите дробь:	$6) a^4 + 4b^4;$	$P_4(x) = x^4 +$
Углубленны		$a^{n+1} - a^{n-1}$	B) $x^4 + 6x^2 - 10$.	$2x^3 + ax^2 +$
		$\overline{a^n + a^{n-1} + a^{n-2}}.$		2x + b

M 3	 1) Решите уравнение: (1 + x)² - 6 x + 1 + 9 = 0; 2) Докажите, что если n – нечетное число, то 1 + 2ⁿ + 7ⁿ + 8ⁿ кратно 9. 	1. Решите уравнение: a) $x^4 + x^2 + 1 + 2x^3 + 2x = 1$; б) $x^4 + 2x^3 + x^2 = 1$. 2. Какое наименьше значение может принимать выражение $3 - \sqrt{4 - \sqrt{3x^2 + 4\sqrt{3}x + 4}}$? При каких значениях x оно достигается?	является квадратом другого многочлена и найдите a и b . В зависимост и от значения параметра a , определите число корней уравнения $x^2 + 4x - 2 \mid x - a \mid + 2 - a = 0$.
НЗ	При каком целом положительном x значение выражения $\sqrt{\frac{x-3}{x+1}} \cdot \frac{1+(x-1)\sqrt{x^2-2x-3}-x^2}{x^2-(x+3)\sqrt{x^2-2x-3}-9}$ ближе всего к 0 , 66 ?	Решите уравнение: $x^4 - 4x^3 - 1 = 0$	Докажите, что $a^4 + b^4$ $\geq \frac{1}{8}$, если $a + b \geq 1$.

Ур	0B	Теорема Виета	Метод группировки	Теорема Э. Безу и ее
ень				следствия
	3	Не решая	Разложите на	Запишите в виде
Ä	3	уравнения, найдите	множители:	формулы правило
HP		сумму и	a) $a^2 - a - ab^2 + b - 2ab + ab^2$	нахождения делимого
Общеобразовательный		произведение его	2;	a по делителю b ,
те		корней:	$6) abx^2 + bxy - axy - y^2.$	неполному частному q
088		a) $4x^2 - 15x = 0$;		и остатку r . По этой
a 3(6) $2x^2 - 25 = 0$;		формуле найдите:
6 b		$e) x^2 - 9x + 20 = 0.$		a) делимое a , если
ne o				неполное частное
100				равно 15, делитель –
				7 и остаток – 4;
				δ) делитель b , если a

				1
				= 257, q = 28, r = 5; в) неполное частное q , если $a = 597, b = 12,$ $r = 9.$
	M	Не решая	Разложите на	Определите, при каких
	3	уравнения, найдите	множители:	натуральных
		сумму четвертых	(a) $x^4 + 4$;	значениях n данное
		степеней его	$(6) x^4 + 16x^2 + 28.$	выражение
		корней: $x^2 - 3x +$		$\frac{2n+12}{2n}$ принимает целые
		1 = 0.		${2n}$
		1 0.		значения.
	H	Дано уравнение x^2	1. Разложите на	При каких значениях а
	3	+5x - 4 = 0 c	множители:	и b выполняется без
		корнями x_1 и x_2 .	a) $a^{k+1}-a+a^k-1$;	остатка деление x^4 +
		Составьте	6) $a^{2n+1} - a^{n+1} + a^n - 1$.	$3x^3 - 2x^2 + ax + b$ на
		квадратное	2. Решите уравнение:	$x^2 - 3x + 2$?
		уравнение с	$2x^3 + 3x^2 + 2x + 3 = 0$	
		корнями:		
		a) $y_1 = \frac{1}{x_1} \mathbf{H} y_2 = \frac{1}{x_2};$		
		$\delta y_1 = x_1 \cdot x_2^2 \ \mathbf{M}$		
		$y_2 = x_2 \cdot x_1^2 \cdot$		
	3	 Определите k 	1. Решите уравнение в	1. Дан многочлен
	3	так, чтобы один из	целых числах:	$P_3(x) = x^3 + 3x^2 - 7x - 6.$
		корней уравнения	$x^2 - 3xy + 2y^2 = 5.$	Pазделите его на $f(x)$
		$9x^2 - 18(k-1)x - 8k$	2. Сократите дробь:	с остатком:
		+24 = 0 был вдвое	$x^5 + x^4 - 2x^3 - 2x^2 - 3x - 3$	<i>a</i>) $f(x) = x - 1$; <i>6</i>)
		больше другого.	$x^5 + x^4 + 4x^3 + 4x^2 + 3x + 3$	f(x) = x + 3.
HP		2) Сумма квадратов		2. Найдите остаток от
Be		корней уравнения		деления
\prod_v		$x^2 + (3p - 5)x + (3p^2$		$f(x) = x^4 + 7x^3 + 2x^2 -$
Ä		-11p - 6)=0 равна		3x - 5 Ha $x + 1$.
HP		65. Найдите		
ен		значения параметра		
Углубленный уровень		<i>р</i> и его корни.		
	M	, , , , , , , , , , , , , , , , , , ,	1) Решите уравнение:	При каких значениях а
>	3	$ax^2 + bx + c = 0,$	$x^4 + 12x^3 + 32x^2 - 8x - $	и b выполняется без
		корни которого x_1 и	4 = 0.	остатка деление x^4 +
		x_2 . Составьте	2) Разложите на	$3x^3 - 2x^2 + ax + b$ Ha x^2
		уравнение, корни	множители:	-3x + 2?
		которого будут	$x^5 + x + 1$.	
		равны: $a) x_1 - a$ и		
		$x_2 - a$; б) ax_1 и ax_2 .	1	1

	H 3	2) Решите уравнение: $a) x^4 + x^3 - 4x^2 - x + 3 = 0$; б) $x^4 + 4x^3 - 4x - 1 = 0$; в) $x^3 + 6x^2 - 3x - 10 = 0$. 1) Решите уравнение, используя теорему		 Докажите, что ∀x, y ∈ R выполняется x² + 10y² - 6xy + 10x
		Виета и теорему Безу, если известно, что произведение двух его корней равно единице: $2x^3 - (2\sqrt{3} + 10)x^2 + (2 + 2)$ Решите уравнение:	$5\sqrt{3})x - \sqrt{3} = 0.$ $-6\sqrt{3})x^2 + (4\sqrt{3} - 3)x + 2 = 0.$	- 26 <i>y</i> + 30 > 0. 2) 2003 является дискриминантом квадратного уравнения с целыми коэффициентами. Верно или нет.
Уp	ОВ	Замена	Симметрические	
Ур ен		Замена переменных	Симметрические многочлены	
_			многочлены	
_	Ь	переменных	-	
ен	3	переменных Решите уравнение: $a) (2x^2 + 3)^2 - 12(2x^2 + 3) + 11 = 0;$	многочлены Найдите значение функции $f(x,y)$ в точке $A(x,y)$:	
ен	3	переменных Решите уравнение: $a) (2x^2 + 3)^2 - 12(2x^2 + 3) + 11 = 0;$	многочлены Найдите значение функции $f(x,y)$ в точке	
ен	3 3	переменных Решите уравнение: $a) (2x^2 + 3)^2 - 12(2x^2 + 3) + 11 = 0;$ $b) 4x^4 - 5x^2 + 1 = 0.$ Решите уравнение: $a) (x^2 + x - 1)(x^2 + x + 2) = 40;$	многочлены Найдите значение функции $f(x,y)$ в точке $A(x;y)$: а) $f(x,y) = x + y$; $A(3;3)$; б) $f(x,y) = x^2 + y^2$; $A(-2;4)$. Разложите на множители: $P(x,y) = 2x^4 - 3x^3y + 5x^2y^2$	
_	з 3 3 М	переменных Решите уравнение: $a) (2x^2 + 3)^2 - 12(2x^2 + 3) + 11 = 0;$ $b) 4x^4 - 5x^2 + 1 = 0.$ Решите уравнение: $a) (x^2 + x - 1)(x^2 + x)$	многочлены Найдите значение функции $f(x,y)$ в точке $A(x;y)$: а) $f(x,y) = x + y$; $A(3;3)$; б) $f(x,y) = x^2 + y^2$; $A(-2;4)$. Разложите на множители: $P(x,y) = 2x^4 - 3x^3y + 5x^2y^2$	

	3	Решите уравнение:	Решите систему	
	3	$6(x^2-4)^2+5(x^2-$	уравнений:	
		$4)(x^2-7x+12)+(x^2-$	$\int x + y + z = 0,$	
ень		$7x + 12)^2 = 0.$	$\begin{cases} x^3 + y^3 + z^3 = -18, \end{cases}$	
ровень			$x^4 + y^4 + z^4 = 98.$	
>	M	Решите уравнение:	1) Решите уравнение:	
[PI]	3	a) $(x^2 + x + 2)(x^2 + 2x$	$a) x^4 - 5x^3 + 8x^2 - 5x + 1 =$	
HH		$+2)=2x^2;$	0;	
— бле		$\delta(x-1)(x-2)(x-1)$	$(6) x^7 + 2x^6 - 5x^5 - 13x^4 -$	
Углубленный		$4)(x - 8) = 7x^2.$	$13x^3 - 5x^2 + 2x + 1 = 0.$	
V				
	H	Решите уравнение:		
	3	$3(x^2 + 2x - 1) - 2(x^2 +$		
		$3x - 1) + 2x^2 = 0.$		