«ПРОВЕРЕНО»

«УТВЕРЖДЕНО»

Заместитель директора по	Директор ГБОУ гимназии
УР ГБОУ гимназии	им. С. В. Байменова
им. С. В. Байменова	города Похвистнево
города Похвистнево	/ Г.И. Павлова/
/Е.В.Чиликина/	
	Приказ №
«» августа 2022 г.	от «» августа 2022 года

РАБОЧАЯ ПРОГРАММА КУРСА Точка роста

Наименование курса	Олимпиадный кружок по физике
Классы	8A
Количество часов	34
Составители	Архирейская Татьяна Геннадиевна
Учителя, работающие по	Архирейская Татьяна Геннадиевна
данной программе	

«PACCMOTPEHO»

на заседании методического объединения учителей естественнонаучных дисциплин протокол № от «27» августа 2022 г. Руководитель МО _____/Синеглазова И.В./

Пояснительная записка

Рабочая программа занятий олимпиадного кружка по физике предназначена для организации внеурочной деятельности обучающихся 8 классов ГБОУ гимназии им. С.В. Байменова города Похвистнева Самарской области.

Реализация программы обеспечивается нормативными документами:

- 1. Федеральный закон от 29.12.2012 № 273-ФЗ (ред. от 31.07.2020) «Об образовании в Российской Федерации» (с изм. и доп., вступ. в силу с 01.09.2020).
- 2. Паспорт национального проекта «Образование» (утв. президиумом Совета при Президенте РФ по стратегическому развитию и национальным проектам, протокол от 24.12.2018 № 16).
- 3. Государственная программа Российской Федерации «Развитие образования» (утв. Постановлением Правительства РФ от 26.12.2017 № 1642 (ред. от 22.02.2021) «Об утверждении государственной программы Российской Федерации «Развитие образования».
- 4. Профессиональный стандарт «Педагог (педагогическая деятельность в дошкольном, начальном общем, основном общем, среднем общем образовании), (воспитатель, учитель)» (ред. от 16.06.2019) (Приказ Министерства труда и социальной защиты РФ от 18 октября 2013 г. № 544н, с изменениями, внесёнными приказом Министерства труда и соцзащиты РФ от 25.12.2014 № 1115н и от 5.08.2016 г. № 422н).
- 5. Федеральный государственный образовательный стандарт основного общего образования (утв. приказом Министерства образования и науки Российской Федерации от 17.12.2010 № 1897) (ред. 21.12.2020).
- 6. Примерной основной образовательной программы основного общего образования (одобрена решением федерального учебно-методического объединения по общему образованию, протокол от 08.04.2015 № 1/15), входит в специальный государственный реестр примерных основных образовательных программ: www.fgosreestr.ru.
- 7. Основной образовательной программы основного общего образования ГБОУ гимназии им. С.В. Байменова города Похвистнево.
- 8. Примерных программ по учебным предметам. Физика. 7 9 классы (повышенный уровень): проект. М. : Просвещение, 2011, с.25-48.
- 9. Методические рекомендации по созданию и функционированию в общеобразовательных организациях, расположенных в сельской местности и малых городах, центров образования естественнонаучной и технологической направленностей («Точка роста») (Утверждены распоряжением Министерства просвещения Российской Федерации от 12 января 2021 г. № Р-6).
- 10. Методические рекомендации по созданию и функционированию детских технопарков «Кванториум» на базе общеобразовательных организаций (утв.

распоряжением Министерства просвещения Российской Федерации от 12.01.2021 № Р-4).

Внеурочная деятельность является составной частью образовательного процесса и одной из форм организации свободного времени обучающихся. В рамках реализации ФГОС ООО внеурочная деятельность – это образовательная деятельность, осуществляемая в формах, отличных от урочной системы обучения, направленная на достижение планируемых результатов освоения образовательных программ основного общего образования. Особенностью внеурочной деятельности по физике в рамках кружковой работы является то, что она направлена на достижение обучающимися в большей степени личностных и метапредметных результатов. Реализация курса внеурочной деятельности по физике «Занимательные опыты по физике» способствует общеинтеллектуальному направлению развития личности обучающихся 8-х классов.

Физическое образование в системе общего и среднего образования занимает одно из ведущих мест. Являясь фундаментом научного миропонимания, оно способствует формированию знаний об основных методах научного познания окружающего мира, фундаментальных научных теорий и закономерностей, формирует у учащихся умения исследовать и объяснять явления природы и техники.

Целью данной программы является предоставление учащимся возможности удовлетворить индивидуальный интерес к изучению практических приложений физики в процессе познавательной и творческой деятельности при проведении самостоятельных экспериментов и исследований.

В ходе изучения курса создаются условия для решения следующих задач:

- 1. Помощь ученику в обоснованном выборе дальнейшего профиля обучения.
- 2. На теоретических занятиях первого уровня (девиз «Учимся измерять») приобретение учащимися предметных умений: планировать эксперимент в соответствии с поставленной задачей, отбирать приборы для эксперимента, научиться выбирать рациональный метод измерений, выполнять эксперимент и обрабатывать его результаты.
- 3. Выполнение практических и экспериментальных заданий второго уровня (девиз «Измеряем самостоятельно») позволит учащимся применить приобретенные навыки в нестандартной обстановке, развивать умение работать со средствами информации; готовить сообщения и доклады, оформлять и представлять их, участвовать в дискуссии.
- 4. Все эти задачи нацелены на развитие мышления учащихся и формирование предметных и метапредметных универсальных учебных действий.

Программа рассчитана на 68 часов. В учебном плане гимназии 34 часа в 8 классе (1 час в неделю) и 34 часа в 8 классе (1 час в неделю). Поэтому в программу внесены следующие изменения:

№/п	Название раздела	Количество часов в программе	Количество часов в рабочей программе
1	Методы измерения физических величин	28	22
2	Физические измерения в повседневной жизни	12	12
3	Физический практикум	22	0
4	Резервное время	6	0
	Итого	68	34

Основное содержание занятий

Методы измерения физических величин. 28 ч

Меры безопасности при проведении эксперимента. Основные и производные физические величины и их измерения. Единицы и эталоны единиц физических величин. Абсолютные и относительные погрешности прямых измерений. Измерительные приборы, инструменты, меры. Инструментальные и отсчетные погрешности. Классы приборов. Границы систематических погрешностей и способы их оценки. Случайные погрешности измерений. Способы опенки границы погрешностей.

Этапы планирования и выполнения эксперимента. Меры предосторожности при проведении эксперимента. Учет влияния измерительных приборов на исследуемый процесс. Выбор метода измерений и измерительных приборов. Способы контроля результатов измерений. Запись результатов измерений. Таблицы и графики. Обработка результатов измерений.

Измерение времени. Методы измерения тепловых величин. Методы измерения электрических величин. Методы измерения магнитных величин. Методы измерения в атомной и ядерной физике.

Лабораторные работы:

- 1. Измерение длины с помощью масштабной линейки и микрометра.
- 2. Оценка границ погрешности при измерениях силы тока.
- 3. Измерение времени реакции человека на световой сигнал.
- 4. Изучение движения системы связанных тел.
- 5. Измерение удельной теплоты плавления льда.
- 6. Измерение электрического сопротивления с помощью омметра,
- 7. Исследование зависимости силы тока от напряжения на концах нити электрической лампы.
- 8. Исследование зависимости периода колебаний маятника от его массы, амплитуды колебаний и длины.
- 9. Измерение электрических величин с помощью цифрового мультиметра.
- 10. Измерение индукции магнитного поля постоянного магнита.

- 11. Исследование полупроводникового диода.
- 12. Измерение коэффициента трения.
- 13. Измерение освещенности при помощи фотоэлемента.
- 14. Регистрация ядерных излучений.

Физические измерения в повседневной жизни. 12 ч.

Измерения температуры в быту. Влажность воздуха и способы ее измерения. Исследование работы сердца. Источники электрического напряжения вокруг нас. Бытовые электроприборы. Бытовые источники света.

Исследовательские и конструкторские задания:

- 1. Исследование зависимости показаний термометра от внешних условий.
- 2. Измерение влажности воздуха.
- 3. Исследование работы сердца человека. Измерение артериального давления.
- 4. Изучение принципа работы пьезоэлектрической зажигалки.
- 5. Изучение принципа работы лампы дневного света (люминесцентной лампы).

Возможные объекты экскурсий (2 ч) в диагностические кабинеты поликлиники или больницы.

Физический практикум. 22 ч.

- 1. Измерение индуктивности катушки.
- 2. Исследование электрических колебаний с помощью электронного осциллографа.
- 3. Измерение элементарного электрического заряда.
- 4. Исследование явления термоэлектронной эмиссии.
- 5. Измерение работы выхода электрона.
- 6. Исследование линейчатого спектра излучения.
- 7. Определение периода полураспада естественного радиоактивного изотопа.

Экспериментальные задания

- 1. Изготовление модели газового термометра.
- 2. Опыт с радиометром Крукса.
- 3. Изготовление водяного барометра.
- 4. Изготовление модели автомата пожарной сигнализации.
- 5. Исследование параметров «черного ящика» на постоянном токе.
- 6. Исследование параметров «черного ящика» на переменном токе.
- 7. Расчет и испытание модели автомата для регулирования температуры.
- 8. Исследование радиоактивной загрязненности.

Возможные объекты экскурсий: в физическую лабораторию или исследовательский центр. Резерв времени 6 ч.

Планируемые результаты освоения курса

Личностными результатами изучения курса внеурочной деятельности будут:

- сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике и химии как элементам общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность и способность обучающихся к саморазвитию и личностному самоопределению;
- сформированность мотивации к обучению и целенаправленной познавательной деятельности,
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами изучения курса будут:

- использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование) для изучения различных сторон окружающей действительности;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию;
- умение генерировать идеи и определять средства, необходимые для их реализации;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;
- использование различных источников для получения научной информации.
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными

задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;

- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем.

Регулятивные УУД. Обучающийся научится:

- Самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности.
- Выдвигать версии решения проблемы, осознавать конечный результат, выбирать из предложенных средств и искать самостоятельно средства достижения цели.
- Составлять (индивидуально или в группе) план решения проблемы.
- Работая по предложенному и (или) самостоятельно составленному плану, использовать наряду с основными средствами и дополнительные: справочная литература, физические приборы, компьютер.
- Планировать свою индивидуальную образовательную траекторию.
- Работать по самостоятельно составленному плану, сверяясь с ним и целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства.
- Самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха.
- Уметь оценивать степень успешности своей индивидуальной образовательной деятельности.

Познавательные УУД. Обучающийся научится:

- Анализировать, сравнивать, классифицировать и обобщать изученные понятия.
- Строить логичное рассуждение, включающее установление причинноследственных связей.
- Представлять информацию в виде конспектов, таблиц, схем, графиков.
- Преобразовывать информацию из одного вида в другой и выбирать удобную для себя форму фиксации и представления информации.
- Использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приемы слушания.
- Самому создавать источники информации разного типа и для разных аудиторий, соблюдать правила информационной безопасности.
- Уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче программно-аппаратные средства и сервисы.

• Давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).

Коммуникативные УУД. Обучающийся научится:

- Отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами.
- В дискуссии уметь выдвинуть контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен).
- Учиться критично относиться к своему мнению, уметь признавать ошибочность своего мнения (если оно таково) и корректировать его.
- Различать в письменной и устной речи мнение (свою точку зрения), доказательства (аргументы, факты), гипотезы, аксиомы, теории.
- Уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Общими предметными результатами изучения курса будут:

В познавательной сфере:

- знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты;
- умения обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул;
- умения обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- умения структурировать изученный материал и естественнонаучную информацию, полученную из других источников.

В ценностно-ориентационной сфере:

• анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с работой механизмов, переработкой веществ.

В трудовой сфере:

• проводить физический эксперимент.

В сфере безопасности жизнедеятельности:

• оказывать первую помощь при травмах, связанных с лабораторным оборудованием.

Частными предметными результатами изучения курса будут:

• формирование представлений о закономерной связи и познаваемости явлений природы, об объективности научного знания; о системообразующей роли

физики для развития других естественных наук, техники и технологий; научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;

- формирование представлений о физической сущности явлений природы (механических, тепловых, электромагнитных и квантовых), видах материи (вещество и поле), движении как способе существования материи; усвоение основных идей механики, атомно-молекулярного учения о строении вещества, элементов электродинамики и квантовой физики; овладение понятийным аппаратом и символическим языком физики;
- формирование систематизированных представлений о веществах, их превращениях и практическом применении; овладение понятийным аппаратом и символическим языком физики;
- формирование умений устанавливать связи между реально наблюдаемыми физическими явлениями и процессами, происходящими вокруг;
- приобретение опыта применения научных методов познания, наблюдения физических явлений, проведения опытов, простых экспериментальных исследований, прямых и косвенных измерений с использованием аналоговых и цифровых измерительных приборов; понимание неизбежности погрешностей любых измерений;
- понимание физических основ и принципов действия (работы) машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияния их на окружающую среду; осознание возможных причин техногенных и экологических катастроф;
- осознание необходимости применения достижений физики для рационального природопользования;
- развитие умения планировать в повседневной жизни свои действия с применением полученных знаний законов механики, электродинамики, термодинамики и тепловых явлений с целью сбережения здоровья;
- формирование представлений о нерациональном использовании природных ресурсов и энергии, загрязнении окружающей среды как следствие несовершенства машин и механизмов;
- формирование представлений о значении естественных наук в решении современных экологических проблем, в том числе в предотвращении техногенных и экологических катастроф.

Образовательные технологии

Для достижения поставленных целей обучения используются следующие образовательные технологии: технология развития исследовательских навыков, информационно-коммуникативные технологии, дифференцированного подхода в обучении, здоровьесберегающие технологии. При этом используется личностно-

ориентированный и деятельностный подход в обучении: наглядный, практический, исследовательский и проектный методы обучения.

В соответствии с целями курса внеурочной деятельности, его содержанием и методами обучения наиболее оптимальной формой занятия является самостоятельная исследовательская работа. Необходимо отдавать предпочтение следующим формам работы:

- консультация с учителем;
- работа в малых группах (2-3 человека) при выполнении исследовательских заданий;
- подготовка отчетных материалов по результатам проведения исследований;
- создание исследовательских практико-ориентированных проектов.

В работе возможны следующие виды деятельности:

- выполнение лабораторных работ и лабораторных исследований;
- домашние самостоятельные исследования;
- составление таблиц, построение графиков;
- устные сообщения учащихся с последующей дискуссией;
- работа в группах и защита проектов;
- работа со справочной литературой, энциклопедиями, ресурсами Internet.

Формы и средства контроля: практическая работа, лабораторная работа, взаимоконтроль, защита творческих работ и проектов. Формы контроля направлены на выявление углубленных знаний всей темы и на установление связей со знанием предыдущих тем, закрепление практических умений учащихся.

Система оценивания — зачетная. Зачет ставится за решение физических задач, подготовку выступлений, выполнение исследовательских лабораторных работ.

Технические средства

- Персональный компьютер.
- Интерактивная панель.
- Компьютерный мобильный класс.
- Комплект физического оборудования для проведения лабораторных работ.
- Цифровая лаборатория центра «Школьный Кванториум».

В процессе обучения предполагается активное использование медиаресурсов и информационных технологий, интернет ресурсов. Презентации, созданные учителем и учащимися в процессе образовательного процесса по изучаемым темам курса.

Программа актуальна в условиях предпрофильной подготовки обучающихся. Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования к программам по учебным предметам.

21 июня 2021 года

Архирейская Т.Г.

Календарно-тематическое планирование

№ п/п	Содержание обучения	Количе	Сроки	Форма
	1 полугодие	ство	проведе	проведения
		часов	ния	
	Методы измерения физических величин	16		
1	Инструктаж по технике безопасного	1	1 н	Инструктаж
	поведения в кабинете физики и при работе с			
	физическими приборами и лабораторным			
	оборудованием.			
2	Основные производные физические величины	1	2 н	Лекция с
	и их измерение. Единицы и эталоны единиц			элементами
	физических величин.			практической
				работы
				Лекция
3	Абсолютные и относительные погрешности	1	3 н	Лекция с
	прямых измерений. Измерительные приборы,			элементами
	инструменты, меры.			практической
				работы
4	Инструментальные и отсчетные погрешности.	1	4 н	Лекция с
	Классы приборов, границы систематических			элементами
	погрешностей и способы их оценки.			практической
	Случайные погрешности измерений и оценка			работы
	их границ.			
5	Лабораторная работа 1. Измерение длины	1	5 н	Практическая
	при помощи масштабной линейки и			работа
	микрометра.			
6	Лабораторная работа 2. Оценка границ	1	6 н	Практическая
	погрешности при измерениях силы тока.			работа
7	Этапы планирования и выполнения	1	7 н	Лекция с
	эксперимента. Меры предосторожности при			элементами
	проведении эксперимента. Учет влияния			практической
	измерительных приборов на исследуемый			работы
	процесс.			
8	Лабораторная работа 3. Измерение	1	8 н	Практическая
	электрического сопротивления с помощью			работа
	омметра.			
9	Выбор метода измерения и измерительных	1	9 н	Лекция с
	приборов. Способы контроля результатов			элементами
	измерения. Оценка случайных погрешностей			практической
	измерений. Запись результатов измерений.			работы
10	Методы измерения электрических величин.	1	10 н	Лекция с

				элементами практической
11	Поборожения побоже 4. Изоходорожно	1	11	работы
11	Лабораторная работа 4. Исследование	l	11 н	Практическая
	полупроводникового диода.			работа
12	Таблицы и графики. Обработка результатов	1	12 н	Лекция с
	измерений. Обсуждение и представление			элементами
	полученных результатов.			практической
				работы
13	Лабораторная работа 5. Исследование	1	13 н	Практическая
	зависимости силы тока от напряжения на			работа
	концах нити электрической лампы.			
14	Лабораторная работа 6. Измерение	1	14 н	Практическая
	электрических величин с помощью цифрового			работа
	мультиметра.			
15	Измерение времени. Методы измерения	1	15 н	Лекция с
	времени.			элементами
				практической
				работы
16	Лабораторная работа 7. Измерение времени	1	16 н	Практическая
	реакции человека на световой сигнал.			работа

№	Содержание обучения	Количес	Сроки	Форма
Π/Π	2 полугодие	ТВО	проведе	проведения
		часов	кин	
	Методы измерения физических величин	6		
1	Методы измерения тепловых величин.	1	17 н	Лекция с
				элементами
				практической
				работы
2	Лабораторная работа 8. Измерение удельной	1	18 н	Практическая
	теплоты плавления льда.			работа
3	Методы измерения магнитных величин.	1	19 н	Лекция с
	Магнитная индукция. Магнитный поток.			элементами
	Индуктивность.			практической
				работы
4	Лабораторная работа 9. Измерение индукции	1	20 н	Практическая
	магнитного поля постоянного магнита.			работа
5	Методы измерения световых величин.	1	21 н	Лекция с
	Источники света. Световые величины и их			элементами
	единицы			практической
				работы

6	Лабораторная работа 10. Измерение	1	22 н	Практическая
	освещенности при помощи фотоэлемента.			работа
	Физические измерения в повседневной	12		
	жизни.		22	
7	Измерение температуры в быту.	1	23 н	Лекция с
				элементами
				практической
8	Переметания переме 11 Изамананамия	1	24 н	работы
0	Лабораторная работа 11. Исследование	1	24 H	Практическая
	зависимости показаний термометра от внешних условий.			работа
9	Влажность воздуха и способы ее измерения.	1	25 н	Лекция с
	влажноств воздуха и спосоом се измерения.	•	23 11	элементами
				практической
				работы
10	Лабораторная работа 12. Измерение	1	26 н	Практическая
	влажности воздуха.			работа
11	Исследование работы сердца. Электрические	1	27 н	
	токи сердца. Электрокардиограмма.			
12	Лабораторная работа 13. Измерение	1	28 н	Практическая
	артериального кровяного давления.			работа
13	Источники электрического напряжения вокруг	1	29 н	Лекция с
	нас. Бытовые электроприборы.			элементами
				практической
				работы
14	Лабораторная работа 14. Изучение принципа	1	30 н	Практическая
	работы пьезоэлектрической зажигалки.			работа
15	Бытовые источники света.	1	31 н	Практическая
	Лабораторная работа 19. Изучение принципа			работа
	работы люминисцентной лампы (лампы			
1.0	дневного света).		22	
16	Экскурсия в диагностические кабинеты	1	32 н	Экскурсия
	поликлиники или больницы.			
17	Подготовка индивидуальных и групповых	1	33 н	Практическая
1/	исследовательских работ, проектов.	1	ЈЈ П	работа
18	Презентация и защита исследовательских работ	1	34 н	Конференция
10	презептация и защита исследовательских расот	1	Ј Т Н	кириэчэчым

Учебно-методический комплекс

- 1. Кабардина С. И. Измерения физических величин: элективный курс / С. И. Кабардина, Н. И. Шефер; под ред. О. Ф. Кабардина. М.: БИНОМ, 2015.
- 2. Кабардин О. Ф, Физика: лабораторные работы: 7—9 кл./ О. Ф. Кабардин, С. И. Кабардина. М.: АСТ, Астрель, 2014.
- 3. Кабардин О.Ф., Орлов В.А. Экспериментальные задания по физике. 9-11 классы. Учебное пособие для учащихся общеобразовательных учреждений. М.: Вербум, 2015.
- 4. Лозовенко С.В., Трушина Т.А. Реализация образовательных программ по физике из части учебного плана, формируемой участниками образовательных отношений, с использованием оборудования детского технопарка «Школьный Кванториум» Методическое пособие: М. 2021.
- 5. Лозовенко С.В., Трушина Т.А. Реализация образовательных программ по физике с использованием оборудования детского технопарка «Школьный кванториум» 7- 9 классы Методическое пособие: М. 2021.
- 6. Внеурочная деятельность. Примерный план внеурочной деятельности в основной школе: пособие для учителя/. В.П. Степанов, Д.В. Григорьев М.: Просвещение, 2014. 200 с. -. (Стандарты второго поколения).
- 7. Научно-популярный физико-математический журнал для школьников и студентов «Квант» http://kvant.mccme.ru/
- 8. Портал естественных наук: Физика http://www.e-science.ru/physics
- 9. Учебно-развлекательный портал для детей, учителей, и родителей http://nau-ra.ru/
- 10. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/
- 11. Российский образовательный портал http://www.school.edu.ru/
- 12. Естественнонаучный образовательный портал http://www.en.edu.ru
- 13. Коллекция «Естественнонаучные эксперименты»: физика http://experiment.edu.ru
- 14. Виртуальный методический кабинет учителя физики http://www.gomulina.orc.ru
- 15. Заочная физико-техническая школа при МФТИ http://www.school.mipt.ru
- 16. Физика в анимациях http://physics.nad.ru

Оснащение внеурочной деятельности по физике

Комплект оборудования физического кабинета состоит из следующих позиций:

- 1. Учебно-методическая литература по физике (учебники, задачники, дидактические материалы, справочная литература).
- 2. Технические средства обучения персональный компьютер с выходом в Интернет, интерактивная панель, мобильный компьютерный класс.
- 3. Комплект электроснабжения кабинета физики.
- 4. Приборы для демонстрационных опытов (приборы общего назначения, приборы по механике, молекулярной физике, электричеству, оптике и квантовой физике)
- 5. Компьютерная измерительная система.
- 6. Приборы для фронтальных лабораторных работ и опытов (наборы оборудования по всем темам курса физики).
- 7. Базовая (обязательная) часть и дополнительное оборудование центра «Точка роста» «Школьный Кванториум». Базовая часть состоит из цифровых датчиков и комплектов сопутствующих элементов ДЛЯ опытов ПО механике, физике, Дополнительное молекулярной электродинамике И оптике. оборудование (профильный комплект) - цифровая лаборатория по физике: один беспроводной мультидатчик Releon Air «Физика-5», программное обеспечение Releon Lite и двухканальная приставка - осциллограф.
- 8. Приборы для практикумов.
- 9. Принадлежности для опытов. (Лабораторные принадлежности, материалы, посуда, инструменты)

Обеспечивает выполнение экспериментов по темам курса физики. Комплектация: Беспроводной мультидатчик по физике с 6-ю встроенными датчиками: Цифровой датчик температуры с диапазоном измерения не уже чем от - 20 до 120С Цифровой датчик абсолютного давления с диапазоном измерения не уже чем от 0 до 500 кПа Датчик магнитного поля с диапазоном измерения не уже чем от -80 до 80 мТл Датчик напряжения с диапазонами измерения не уже чем от -2 до +2В; от -5 до +5В; от -10 до +10В; от -15 до +15В Датчик тока не уже чем от -1 до +1А Датчик акселерометр с показателями не менее чем: ±2 g; ±4 g; ±8 g Отдельные устройства: USB осциллограф не менее 2 канала, +/-100В Аксессуары: Кабель USB соединительный Зарядное устройство с кабелем miniUSB USB Адаптер Вluetooth 4.1 Low Energy Конструктор для проведения экспериментов Краткое руководство по эксплуатации цифровой лаборатории Программное обеспечение Методические рекомендации (40 работ) Наличие	3 , 1, 2	10 /
Беспроводной мультидатчик по физике с 6-ю встроенными датчиками: Цифровой датчик температуры с диапазоном измерения не уже чем от - 20 до 120С Цифровой датчик абсолютного давления с диапазоном измерения не уже чем от 0 до 500 кПа Датчик магнитного поля с диапазоном измерения не уже чем от -80 до 80 мТл Датчик напряжения с диапазонами измерения не уже чем от -2 до +2В; от -5 до +5В; от -10 до +10В; от -15 до +15В Датчик тока не уже чем от -1 до +1А Датчик акселерометр с показателями не менее чем: ±2 g; ±4 g; ±8 g Отдельные устройства: USB осциллограф не менее 2 канала, +/-100В Аксессуары: Кабель USB соединительный Зарядное устройство с кабелем miniUSB USB Адаптер Вluetooth 4.1 Low Energy Конструктор для проведения экспериментов Краткое руководство по эксплуатации цифровой лаборатории Программное обеспечение		* * * *
датчик температуры с диапазоном измерения не уже чем от - 20 до 120С Цифровой датчик абсолютного давления с диапазоном измерения не уже чем от 0 до 500 кПа Датчик магнитного поля с диапазоном измерения не уже чем от -80 до 80 мТл Датчик напряжения с диапазонами измерения не уже чем от -2 до +2В; от -5 до +5В; от -10 до +10В; от -15 до +15В Датчик тока не уже чем от -1 до +1А Датчик акселерометр с показателями не менее чем: ±2 g; ±4 g; ±8 g Отдельные устройства: USB осциллограф не менее 2 канала, +/-100В Аксессуары: Кабель USB соединительный Зарядное устройство с кабелем miniUSB USB Адаптер Вluetooth 4.1 Low Energy Конструктор для проведения экспериментов Краткое руководство по эксплуатации цифровой лаборатории Программное обеспечение		Комплектация:
0 до 500 кПа Датчик магнитного поля с диапазоном измерения не уже чем от -80 до 80 мТл Датчик напряжения с диапазонами измерения не уже чем от -2 до +2В; от -5 до +5В; от -10 до +10В; от -15 до +15В Датчик тока не уже чем от -1 до +1А Датчик акселерометр с показателями не менее чем: ±2 g; ±4 g; ±8 g Отдельные устройства: USB осциллограф не менее 2 канала, +/-100В Аксессуары: Кабель USB соединительный Зарядное устройство с кабелем miniUSB USB Адаптер Вluetooth 4.1 Low Energy Конструктор для проведения экспериментов Краткое руководство по эксплуатации цифровой лаборатории Программное обеспечение		
Датчик магнитного поля с диапазоном измерения не уже чем от -80 до 80 мТл Датчик напряжения с диапазонами измерения не уже чем от -2 до +2В; от -5 до +5В; от -10 до +10В; от -15 до +15В Датчик тока не уже чем от -1 до +1А Датчик акселерометр с показателями не менее чем: ±2 g; ±4 g; ±8 g Отдельные устройства: USB осциллограф не менее 2 канала, +/-100В Аксессуары: Кабель USB соединительный Зарядное устройство с кабелем miniUSB USB Адаптер Вluetooth 4.1 Low Energy Конструктор для проведения экспериментов Краткое руководство по эксплуатации цифровой лаборатории Программное обеспечение		_ ' AA
#5B; от -10 до +10B; от -15 до +15B Датчик тока не уже чем от -1 до +1A Датчик акселерометр с показателями не менее чем: ±2 g; ±4 g; ±8 g Отдельные устройства: USB осциллограф не менее 2 канала, +/-100B Аксессуары: Кабель USB соединительный Зарядное устройство с кабелем miniUSB USB Адаптер Вluetooth 4.1 Low Energy Конструктор для проведения экспериментов Краткое руководство по эксплуатации цифровой лаборатории Программное обеспечение		Датчик магнитного поля с диапазоном измерения не уже чем от -80 до 80 мТл
Датчик акселерометр с показателями не менее чем: ±2 g; ±4 g; ±8 g Отдельные устройства:		<u> </u>
лаборатория по физике (ученическая) ИЅВ осциллограф не менее 2 канала, +/-100В Аксессуары: Кабель UЅВ соединительный Зарядное устройство с кабелем miniUՏВ UЅВ Адаптер Вluetooth 4.1 Low Energy Конструктор для проведения экспериментов Краткое руководство по эксплуатации цифровой лаборатории Программное обеспечение		
физике (ученическая) ИSВ осциллограф не менее 2 канала, +/-100В Аксессуары: Кабель USВ соединительный Зарядное устройство с кабелем miniUSB USB Адаптер Вluetooth 4.1 Low Energy Конструктор для проведения экспериментов Краткое руководство по эксплуатации цифровой лаборатории Программное обеспечение	* * * *	
Кабель USB соединительный Зарядное устройство с кабелем miniUSB USB Адаптер Bluetooth 4.1 Low Energy Конструктор для проведения экспериментов Краткое руководство по эксплуатации цифровой лаборатории Программное обеспечение	*	
Зарядное устройство с кабелем miniUSB USB Адаптер Bluetooth 4.1 Low Energy Конструктор для проведения экспериментов Краткое руководство по эксплуатации цифровой лаборатории Программное обеспечение	(ученическая)	
Bluetooth 4.1 Low Energy Конструктор для проведения экспериментов Краткое руководство по эксплуатации цифровой лаборатории Программное обеспечение		Кабель USB соединительный
экспериментов Краткое руководство по эксплуатации цифровой лаборатории Программное обеспечение		Зарядное устройство с кабелем miniUSB USB Адаптер
Краткое руководство по эксплуатации цифровой лаборатории Программное обеспечение		Bluetooth 4.1 Low Energy Конструктор для проведения
обеспечение		экспериментов
		Краткое руководство по эксплуатации цифровой лаборатории Программное
Методические рекомендации (40 работ) Наличие		обеспечение
русскоязычного сайта поддержки Наличие		русскоязычного сайта поддержки Наличие
видеороликов.		видеороликов.